Chapitre 13

Thermodynamique des milieux continus

Carl Henry Eckart, 1902-1973
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13.1.1 Introduction historique

@ Thermodynamique avant Eckart et Stiickelberg
Avant 1940-1950 :

@ Thermostatique : états d'équilibre

@ Quasi-thermostatique : processus entre des états
d’équilibre

@ Thermodynamique depuis Stiickelberg
Apres 1950 :

@ Thermodynamique : évolution temporelle des états

@ Equations de continuité : description en termes
d’équations différentielles locales

( . 2 ./ D /.

D . . DD h
D a propos de Stiuickelberg 50T

@ Feynman ©

Cern 1965 :

“He did the work and walks alone toward the
sunset ; and, here | am, covered in all the glory,
which rightfully should be his.”

Stiickelberg
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13.1.2 Systeme global et systeme local

Macroscopique

Microscopique

Systéme
local

Systéme 4
global

@ Systeme global : @ Systeme local :
© Milieu continu de points { x } Q Point x
@ Inéquilibre @ Equilibre
© Inhomogene © Homogene
©Q Non-uniforme Q@ Uniforme
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13.1.2 Systeme global et systeme local

@ Systeme global :

© Variable d’état extensive dynamique : quantité de mouvement P (t)

© Variable d’état extensive thermique : entropie S ()

© Variable d’état extensive mécanique : volume V (t)

© Variables d’état extensives chimiques : nombres de moles { N4 (%)}

© Variable d’état extensive électrique : charge électrique @ ()

@ Fonction d’état :

F(t) = F(P (),S (t),V (), N1 (£),..., Ny (1) ,Q(t)) (13.1)

@ Systeme local :

© Champ d’état densitaire dynamique : densité de quant. de mvt p (x, )

© Champ d’état densitaire thermique : densité d'entropie s (x, t)

© Champs d’état densitaires chimiques : densités molaires {n4 (x,t)}

© Champ d’état densitaire électrique : dens. de charge électrique q (x, t)

© Densité de fonction d’état :

fla,t) = f(p (@,1), 8 (@, 1), n1 (2,8) ... 10 (@,1) ,q(m,t)) (13.2)
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13.1.3 Lien entre systeme global et systeme local

© Variable d’état extensive dynamique : quantité de mouvement : (13.3)

P(t) = /V RLCUR /V L@ dclljv(‘(’;;) _ /V W@ P

@ Variable d’état extensive thermique : entropie : (13.4)

S(t) = /V 5@ = /V @ djv(a’;) _ /V W@ s

© Variables d’état extensives chimiques : nombre de moles (13.5)

Ny (1) = /V L Nalat) = /V L@ dg‘fj(é’)t) _ /V W@

@ Variable d’état extensive électrique : charge électrique (13.6)

e = [ dewn=[ ww Wrd=[ wv@aes

@ Fonctions d’état extensives scalaires : (13.7)

F(t) = /V ) dF (x,t) = /V ) dV () djv(‘(’;;) - /V ) AV (z) f (,1)
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13.1.4 Equation de bilan

@ Fonction d’état extensive scalaire : coordonnées cartésiennes du
centre x = (x,y, 2) et volume dV (x) = dx dy dz de cubes infinitésimaux

F(t) = / dF (x,y,z,t) = f(x,y,z,t)drdydz (13.8)
V(t) V(t)
o Dérivée temporelle de la fonction d’état extensive scalaire : (13.9)
: 0 t
F(t):/ f(@y,21) da dydz = o f (x,y,2,t)dxdydz
V(t) ot V(t)
@ Equation de bilan : fonction d’état extensive scalaire
F(t)=1Ir(t)+2ZFr (1) (1.12)
zZ
Y
| a-
) -
\ -~ 1 ~ /
PRI
AN v Y
N
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13.1.4 Equation de bilan

©Q Source de fonction d’état extensive scalaire : a I'intérieur du systéme
de volume V (t)

Yr(t) = /V(t) o (x,y,2,t)drdydz (13.10)J

@ Courant de la fonction extensive scalaire : a travers la surface S (t)
de I'enceinte du systeme par rapport a un référentiel d'inertie immobile

L)) = [ e yntidyds+ [ gy oyt dda
S(t) S(t) (13.11)

S(t)

jfz

\
VA
/N

[

N\ X

\
VAN

jfx \\
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13.1.5 Densité de courant

|
I
dx ¢

e Densité de courant : entrant a l'arriéere et sortant a |'avant

d d
Jfx (:c,y,z,t) = Jfx (33_ ;»yazat) — Jfax (33"'_ ?xayazat> (13-12)

e Développement limité : au 1°" ordre

. dx . 1 0jta (2,9, 2,1)
T o Y <y — T sy Yy < = 13.1
Jf (x:l: 5 yzt> Jre (T,y, 2, 1) 5 O dx (13.13)
o Densité de courant : (13 :13) dans (13.12)
Je (@,y, 2, t) = — Oz (g;y’ 20 gy (13.14)
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13.1.5 Densité de courant

@ Systeme infinitésimal : cube fixe de volume dx dy dz centré en (x,y, 2)
dz

)
|

dx

e Densité de courant : entrant a gauche et sortant a droite

. . d . d
Jfy (x7y7z7t) — Jfy <x7y_ 7y7z7t> — Jfy (CE,y-l- %,Z,t\) (1315)

o Développement limité : au 1°" ordre

d ilajfy(xayazat) d

jfy (ZE,’yj: 7yaz7t> — jfy (CE,y,Z,t) 2 ay y (1316)

o Densité de courant : (13 :16) dans (13.15)

. ajfy (xa Y, =, t)

Jry (T,9,2,t) = 5y dy (13.17)
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13.1.5 Densité de courant

|
I
dx ¢

e Densité de courant : entrant en bas et sortant en haut
. . dz . dz
Jfz ($,y,2,t):jfz (xaywz_ ?7t) — Jfz (x7y7z+77t> (1318)

e Développement limité : au 1°" ordre

. dz : 1 a]fz (x,y,z,t)
z ’ I a6 — z ’yJr < Y 13.1
Jf (x Y,z £ 5 t) Jrz (T, 9, 2,1) 5 5, dz (13.19)

o Densité de courant : (13 :19) dans (13.18)

Jrz (T, y,2,1) = — Oy (g’zy’ 2 1) dz (13.20)
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13.1.5 Courant

@ Courant de la fonction extensive scalaire : a travers |'enceinte du
systeme de surface S (t)

Ir () = /5 i@y dyds 4 /S LIy dzds

(13.11)
—l_/ ]fz (a:,y,z,t)da?dy
S(t)
@ Densité de courant : composantes cartésiennes

6 ‘ T Y Y 7t

jpe (2., 2,t) = — (g v:58) gy (13.14)
x

. Oy (¢, Yy, 2,1

ny (mvya th) - = Iy (ay ) dy (1317)

0jt- Yy 2,1t
jfz (CE,y,Z,t):— Jf (gzy © )dz (1320)

@ Vecteur densité de courant : représentation cartésienne

jf (az,y,z,t) — (.]fCB (ZC,y,Z,t) ajfy (le,y, Zat) 7jfz (xaya Zat)) (1321)
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13.1.5 Courant

o Courant de la fonction extensive scalaire : (13.14), (13.17) et (13.20)
dans (13.11) : intégrale sur le volume

IF(t):—/ OJpa (2,4, %) dxdydz—/ 1y & Y:2) 40 gy
g0 V()

ox Oy

— / Ody= .y, 2) dx dy dz (13.22)
V(t) 0z

@ Opérateur vectoriel gradient : représentation cartésienne

o 0 0
V = (ax, o 32) (13.23)

@ Divergence de la densité de courant : scalaire

x(x ) Z)
5’ J 8). ]f y (13.24)

:ajfx (x,y,2)+33fy(az,y,z)+0jfz (le,y,Z)
Ox 0y 0z

= :c]fa:(x Y,z )+8yjfy(a:,y,z)+8zjfz(:c,y,2)
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13.1.7 Equations de continuité

@ Equation de bilan : fonction d'état extensive scalaire

F(t)=1Ip(t)+Sr (1) (1.12)

@ Dérivée temporelle de la fonction d’état extensive scalaire :

F(t) = o f (x,y,z,t)drdydz (13.9)
V()

@ Source de fonction d’état extensive scalaire :
Y (t) = / of(z,y,z2,t)drdydz (13.10)
V(t)
o Courant de la fonction extensive scalaire : (13.24) dans (13.22)

I (t) = — e V. j3¢(z,y,2,t)dedydz (13.25)}

e Equation de bilan :

o f (x,y,2,t)drdydz = — V. j3¢(z,y,2,t)dedydz
V(t) V()

+ / of(x,y,2,t)drdydz (13.26)
V(1)
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13.1.7 Equations de continuité

@ Equation de bilan : fonction d'état extensive scalaire
F@)=1Ip({t)+2r (1) (1.12)

e Equation de bilan :

of (x,y,z,t)drdydz = — V. j3r(z,y,2,t)dedydz
V(t) V()

+/ o (x,y,2,t)drdydz (13.26)
V(t)

e Equation de continuité : équation de bilan local en (z,y, 2)

atf (x,y,z,t) =+ \% .]f (l’,y,Z,t) —0f (CU,y,Z,t) (1327)J

L'équation de continuité (13.26) décrit I'évolution temporelle et spatiale
de la densité de fonction d'état scalaire f (x,y, z,t) autour du point
(x,vy,z) au temps t par rapport a un référentiel d'inertie immobile.
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13.1.6 Divergence

@ Divergences de champs vectoriels : symétrie sphérique

@ Champ gravitationnel : terre homogene de masse volumique p > 0
V.g=—-41Gp <0

Divergence négative : les vecteurs champ gravitationnel g convergent
vers la terre.

@ Champ électrique : sphere métallique de densité de charge ¢ > 0

v-E=2L>0
€0

Divergence positive : les vecteurs champ électrique E divergent de la
sphere dans le vide de permittivité électrique &g.
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13.1.6 Expérience - Générateur de van der Graaf

ECOLE POLYTECHNIQUY
FEDERALE DE LAUSANNH

© Par contact avec une sphere électriquement chargée, la tension électrique
A entre la téte de la fille et I'air ambiant fait se dresser ses cheveux.
Les cheveux s'alignent radialement selon les vecteurs champ électrique E
orientés radialement.

v.E=2L <9

€0

© Les ruban de papier s'alignent radialement selon les lignes de champ
électrique E a cause de la tension électrique Ay entre la baguette
métallique et I'air ambiant.
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13.1.6 Divergence

@ Vitesse : mouvement rectiligne selon |'axe des abscisses

@ Expansion : divergence positive

V-v(:c):dvfi—agx)>0

@ Contraction : divergence négative

dvg ()
Vv (z) = 22\ g
dx

Expansion Contraction

- — > —> — — —> > —

-+ — > —> —> — —> b 4 <—

(% - — e —> —> v v — — > < —
- — > —> —> — s —> b 4 <—
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13.1.7 Equations de continuité

@ Densité de fonction d’état vectorielle : représentation cartésienne

f(x,y,2,t) = (fm (z,y,2,t), fy (x,y,2,), f2 (z,y, 2, t)) (13.28)
o Equations de continuités : composantes cartésienne de f (x,y, 2, t)
Orfo (2,9,2,8) +V - g (,9,2,1) = 02 (2,9, 2, 1) (13.29)
Ofy (x,y,2,t) + V- gy, (x,y,2,t) = 0py (2,9, 2, 1) (13.30)
Ocf. (x,y,2,8) + V- g3, (2,9, 2,t) =04, (2,9, 2, 1) (13.31)

@ Densité de source vectorielle : représentation cartésienne
or(z,y,z2,t)= (afx (x,y,2,t) 08y (z,y,2,t) ,0¢2 (2,9, 2, t)) (13.32)
@ Densité de courant tensorielle : représentation cartésienne

jf (xvya Z,t) — (]fx (xaya th) 7jfy (xvyaz7t) 7jfz (xayv Z,t)) (1333)
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13.1.7 Equations de continuité

e Equation de continuité : fonction d'état scalaire F'(t)
of (z,y,2,t) + V- gy (2,y,2,t) = 05 (v,y, 2,1) (13.27)

e Equation de continuité : fonction d'état vectorielle F' (t)

Ouf (2,y,2,1) + V- js (2,y,2,1) = 05 (z,4, 2, ) (13.34) |

o Densité de courant tensorielle : représentation cartésienne (13.35)

(]fxx (x,y,z,t) .]f:By (aj7yazat) ]f:z:z (xayazvt)\

Jf (ZC,y,Z,t) — ]fyx (x,y,z,t) jfyy (Q’J,y,Z,t) ]fyz (x,y,z,t)

\]fzx (xayazat) jfzy (ZC,y,Z,t) jfZZ (CU,y,Z,t))

e Divergence vectorielle de densité de courant tensorielle : (13.36)

(jfxx jfmy jfxz\

. o 0 0 . . .
VJf_(@ClZ’({?y’aZ) jfyx ]fyy ]fyz —(,,)

\jfzx jfzy .jfzz)
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13.2 Thermodynamique d’un milieu continu

13.2 Thermodynamique d’un milieu continu
13.2.1 Champs d’état et fonctions de champs d’état
13.2.2 Densités de source
13.2.3 Equations de continuité des champs d’état
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13.2.5 Puissance mécanique
13.2.6 Equation de continuité de I'énergie
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13.2.1 Champs d’état et fonctions de champs d’état

@ Systeme thermodynamique : milieu continu constitué de r substances
chimiques électriquement chargées liées par n réactions chimiques en
mouvement.

@ Champs d’état :

Q p(x,y,2,t) : densité de quantité de mouvement
Q s(z,y,z,t) : densité d'entropie
©Q {na(zx,y,2,t)} : densités de substances chimiquesou A=1,...,r
Q q(z,y,2,t) : densité de charge électrique
@ Fonctions de champs d’état :
Q v(p,s,{na},q) : vitesse
Q c(p,s,{na}l,q) : densité d'énergie
©Q m(s,{na},q) : densité de masse

Q u(s,{na},q) : densité d'énergie interne
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13.2.2 Densités de source

Q@ Quantité de mouvement : premier principe (translation)

e Source : forces extérieures
Xp=) F™ (1.20)

e Densité de source : densités de forces extérieures

op=> f™ (13.37)

@ Entropie : deuxieme principe (évolution)
e Source : non négative

Sg =0 (2.1)

e Densité de source : non négative

o5 >0 (13.38)
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13.2.2 Densités de source

© Quantité de substance A : réactions chimiquesa=1,...,n

e Source : réactions chimiques de vitesse (),

n
4= Qavan (8.16)
a=1
e Densité de source : réactions chimiques de densité de vitesse wy

oA = Z Wa Va A (13.39)
a=1

© Charge électrique :

e Source : loi de conservation
Yo =0 (8.40)

e Densité de source : loi de conservation

gg=0 (13.41)
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13.2.3 Equations de continuité des champs d’état

e Equations de continuités :
Of +V - jr=oy (fonction d’état scalaire) (13.27)

hf+V-jg=o0y (fonction d’'état vectorielle) (13.34)
@ Quantité de mouvement : f=p : o, => f*

hp+V jp=) f (13.46)J
©Q Entropie: f=s : 0, >0
0s+V-js=0s=>0 (13.47))

@ Quantité de substance chimique A: f=na : 04 =) _| Walaa

a=1

atnA—l—V-jA:ZanaA (13.48)J

@ Charge électrique : f=q : 0,=0

8¢+ V - jg =0 (13.49) |
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13.2.4 Théoreme du centre de masse

@ Quantité de mouvement : équation de continuité

hp+V-jp=) Ff (13.46)
@ Densité de quantité de mouvement :
p=muv (13.50)

o Quantité de mouvement : équation de continuité (13.50) dans (13.46)
m@thr(@tm)erV-jp:ZfeXt (13.51)

@ Densité de courant et tenseur des contraintes :
jp=EPv—T=mvv— T (13.52)

o Densité de courant : représentation cartésienne (13.53)

/]pa;:r; ]pwy ]pmz\ (”ITL Vg Vg — Tgxe TN Ug 'Uy o T:cy MUy Vy — sz\
Jpyz  Jpyy Jpyz | = | MUy Uz — Tyx MUyUy = Tyy MUy Vy = Tyz
\]pzx jpzy ]pzz) \m Uy Uy — Tagx MUy ’Uy o sz muv, Vy — Tzz)

Dr. Sylvain Bréchet 13 Thermodynamique des milieux continus



13.2.4 Théoreme du centre de masse

@ Densité de courant de quantité de mouvement :
jp=Epv—T=mvv— T (13.52)
@ Regle de Leibnitz : divergence d'un produit de vecteurs
V-pv)=p-Vo+(V-ppv=mv-Vo+V - -(mv)v (13.54)
o Divergence vectorielle de la densité de courant : (13.52) et (13.54)
Viip=mv-Vuo+V.-(mv)v— V.71 (13.55)
@ Quantité de mouvement : équation de continuité

mov+ (Oym)v+V-jp=> f (13.51)

e Quantité de mouvement : équation de continuité (13.55) dans (13.51)
m(Oyv+v-Vov)+ (@m—kV : (m’v)) v— V.1 = Z Fet (13.56)

Le tenseurs des contraintes T est défini dans le référentiel local du fluide.
L'équation de continuité (13.56) doit étre étudiée dans ce référentiel.
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13.2.4 Théoreme du centre de masse

@ Equation d’évolution : référentiel d'inertie immobile

m(0;v+v-Vov)+ (8tm+V-(mv))v— V-T:Z ft (13.56)

@ Dérivée temporelle de la vitesse : référentiel local du fluide

vV=0v+v- -V ainsi V= 0 v si v=20 (13.57)

@ Equation d’évolution : référentiel local du fluide
m1}+(8tm+v-(m'v))fv—V-T:ZfeXt (13.58)

Cette équation d'évolution doit étre valide par rapport a tous les
référentiels d'inertie. Elle doit donc étre indépendante de la vitesse v ce
qui donne I'équation de continuité de la masse.

@ Masse : équation de continuité : absence de densité de source

om+V-(mv)=0 (13'59)J
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13.2.4 Théoreme du centre de masse

@ Théoreme du centre de masse : (13.59) et (13.57) dans (13.56)

Z fext_|_v.7-:m’l.) (1360)J

La divergence du tenseur des contraintes V - 7 est une densité de force
due a la déformation du systeme local infinitésimal par les systemes
locaux voisins.

@ Tenseur des contraintes : symétrique

P (7- _ p> 1+ 7 (1361))

ou 1 est le tenseur identité représenté par la matrice identité.

@ Pression : pl : expansion et contraction réversibles
changement de volume sans changement de forme

@ Frottement interne scalaire : 71 : expansion et contraction irréversibles
changement de volume sans changement de forme

© Frottement interne tensoriel : 7’ : cisaillement irréversible
changement de forme sans changement de volume
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13.2.4 Théoreme du centre de masse

@ Tenseur des contraintes : symétrique
T=(r—p)l+7 (13.61)

© Pression : pl : expansion et contraction réversibles
changement de volume sans changement de forme

@ Frottement interne scalaire : 71 : expansion et contraction irréversibles
changement de volume sans changement de forme : 7 = %tr (t+pl)

© Frottement interne tensoriel : 7’ : cisaillement irréversible

changement de forme sans changement de volume : tr7’ =0

e Tenseur des contraintes : représentation cartésienne (13.62)

/ / /
/Tx:c Txy Ta:z\ (T — D + Trx Twy Txz \
_ / / /
Tey Tyy Tyz | = Ty T — D+ Ty Tyz
/ / /
\sz Tyz TZZ) K T Ty2 T— D+ TZZ)
@ Tenseur des contraintes : sans frottement
T=—-pl (réversible) (13.63)
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13.2.4 Théoreme du centre de masse

@ Théoréeme du centre de masse : (13.61) dans (13.60)
Y f - Vp+Vr+ VT =mi (13.64)

La divergence du tenseur de frottement V - 7/ permet de rendre compte
de la viscosité dans |'équation fondamentale de la mécanique des fluides
appelée équation de Navier-Stokes (chapitre 14).

@ Théoréme du centre de masse : sans frottement : 7=0et 7' =0
Z f'— Vp=md (réversible) (13.65)

Le gradient de pression — V p permet de rendre compte de la force
exercée par une colonne de liquide en hydrostatique : il est a la base de la
force d’Archimede (application du chapitre 13). Il apparait également en
hydrodynamique dans le théoreme de Bernoulli et permet de rendre
compte de I'effet Venturi (chapitre 14).
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13.2.5 Puissance mécanique

@ Dérivée temporelle du volume : démontré en exercice

V(t) = V-v(zx,y,z2,t)dedydz (13.66)
V(t)

@ Puissance mécanique : déformation réversible homogene

Py =—pV=—p V -vdedydz  (réversible) (13.67)
V (t)

@ Puissance mécanique : trace du produit matriciel
Py = — / (pl): (Vwv)drdydz (réversible) (13.68)
V(t)

@ Tenseur des contraintes : symétrique
T=(—pl+7 (irréversible) (13.61)

@ Puissance mécanique : déformation irréversible non-homogene

Py = 7: (Vv)drdydz (irréversible) (13.69)
V(t)
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13.2.5 Puissance mécanique

@ Puissance mécanique : déformation réversible

PW:—/ pV-vdxdydz:—/ (pl): (Vwv)drdydz (13.68)
V(t) V(t)

@ Densité de puissance mécanique : représentation cartésienne

p 0 0 %
— (pl): (Vo) =—tr 0O p O @ (Vg Vy, V2)
0 0 »p 5
p 0 0\ (G2 T B
=—tr[ {0 p Of [G= F»r G
0 0 p Ove 9vy v,

0z 0z 0z
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13.2.6 Equation de continuité de I'énergie

e Equation de continuité :

Of +V - -jr=oy (fonction d’état scalaire) (13.27)

@ Energie et énergie interne : premier principe

o Source : puissance due aux forces extérieures (1.49) donne (13.69)

ZE:PeXt:ZFeXt-’v et EU:PW:/ 7: (Vv)dxdydz
V(t)

e Densité de source : densités de puissance extérieure et mécanique
o=y f™ v et ou=7:(Vv) (13.70)

@ Equation de continuité de I'énergie : f =e¢

Ore+V -je=)» fov (13.71)J

e Equation de continuité de I'énergie interne : [ =

Ohu+V.-j3,=71: (Vo) (13'72)J
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13.2.6 Equation de continuité de I'énergie

@ Densité de source d’énergie interne :

o,.=7:(Vu)=(1—-p)V-v+7": (Vo) (13.70)
@ Densité de source d’énergie interne : représentation cartésienne
9
Tex Tzxy Txz 38@
7: (Vo) =tr Toy Tyy Tyz @ (Vg5 Uy, V) (13.73)
Trz Tyz Tzz 92
/ / / OV ov, 0v,,
T— D+ Trx Ty Trz é?ﬂv ga: é’)x
/ / / VU V2 V2
/ / v,  Ovy  Ovuy
Tez Tyz TP+ T2z avz avz avz

/ / / OV Ov,, Ov,
Ty Ta:y Tyz (,?x T T
/ / / Vg UV Ve
+ tr Toy  Tyy  Tyz dy Oy Oy
/ / / OV ov,, oV,
T T, T
Lz y= zz 0z 0z 0z
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13.2.7 Densités de courant

@ Courant d’énergie interne :
I (t) = Ig (t) + I (1) (1.50)
e Courant d’énergie interne : (13.25)
Iy (t) = — V jgu(x,y,2,t)drdydz (13.74)
V(t)
o Courant de chaleur : (13.25)
Io(t) = — V .-jo(z,y,2,t)drdydz (13.75)
V()

o Courant de chaleur : température homogene : T' (t) =T (x,y, z, 1)

Io(t)=T(t)Is (1)

13.76
S / V- (T(x,y,z,t)js (x,y,z,t)) dzr dy dz ( )
V(t)
o Densité de courant de chaleur : (13.75) et (13.76)
jo (@,y,2,t) =T (x,y,2,t) §s (2,4, 2,1) (13.77) |

Dr. Sylvain Bréchet 13 Thermodynamique des milieux continus



13.2.7 Densités de courant

o Courant énergétique de matiere : (13.25)

Io (t) = — v V jc(x,y,2,t)dedydz (13.78)

o Courant énergétique de matieére : jis (t) = jia (2,9, 2,1)

Ic (t) = fa(t) 1a(t)
A=l (13.79)

:—/ V(Z /ZA(:U,y,z,t)jA(x,y,z,t))dxdydz
Vi(t) A=1

o Densité de courant énergétique de matiere : (13.78) et (13.79)

jC’ (xayazaw — Z Ty (m,y,Z,t)jA (ZU,y,Z,t) (1380)
A=1
@ Densité de courant d’énergie interne :
ju=3Jqg+ic=Tjs+ > _ haja (13.81)}
A=1
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13.3 Irréversibilité en thermodynamique des milieux continus

13.3 Irréversibilité en thermodynamique des milieux continus
13.3.1 Loi de Fourier
13.3.2 Loi de Fick
13.3.3 Loi d’'Ohm
13.3.4 Loi de Stokes
13.3.5 Dissipation chimique
13.3.6 Densité de source d’entropie
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12.3.1 Loi de Fourier

@ Démarche : on déduit la loi de Fourier pour un milieu continu en se
basant sur la loi de Fourier (3.22) pour des sous-systemes discrets.

@ Systéme : deux sous-systémes simples aux températures T et T~
séparés par une paroi diatherme, immobile et imperméable.

@ Loi de Fourier :

Io = ﬁ;% (T+ _ T—) (3.22)

@ Coefficient de conductivité thermique : «
Q Aire dela paroi : A
© Epaisseur de la paroi : /

@ Formulation continue : on considere que le systeme est inhomogeéne et
que la température varie continument et Iinéairement de la température
maximale T a gauche a la température minimale 7'~ a droite. Soit ¢ la
longueur entre les deux extrémités du systeme et 7 le vecteur unitaire

orienté de gauche a droite.
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13.3.1 Loi de Fourier

Systeme discret

Milieu continu

et /

-
VT 14

@ Gradient de température : orienté sens croissant de 7T’

T+ — T~
VT =— / T (13.82)
@ Densité de courant de chaleur : orienté sens décroissant de T’
1
jo =7 (13.83)

e Loi de Fourier : continue (3.22) et (13.82) dans (13.83)

jo=—-kVT (12.84) |
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13.3.1 Loi de Fourier

e Températures voisines : Tt — T— < T

TTT-~T* ou T= (13.85)

e Source d’entropie : (13.85) dans (3.22)

1
__ (7t -\ 1
Ys=(TT-T )ﬁ>0 (13.86)
@ Densité de courant d’entropie : orienté sens décroissant de T’
. Is . 1 g,
s = —F = — =% 13.87
Js= P =777 (13.87)

@ Gradient de température : orienté sens croissant de 7'

T+ — T-
VI=-"— (13.82)
o Densité de source d’entropie : (13.82) et (13.87) dans (13.86)
s Mg 1 .
— - == = : > :
0s =3, = 74 7 Js VT>0 (13 88)J
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13.3.2 Loi de Fick

@ Démarche : on déduit la loi de Fick pour un milieu continu en se basant
sur la loi de Fick (3.75) pour des sous-systemes discrets.

@ Systeme : deux sous-systemes simples avec une seule substance
électriquement chargée a température I’ et aux potentiels
électrochimiques ﬁj{ et i, séparés par une paroi diatherme, immobile et
perméable.

o Loide Fick : uly — [l et pu, — jiy
A

In=Fa s (i - iz ) (3.75)

@ Coefficient de diffusion électrochimique : F4
@ Aire de la paroi : A
© Epaisseur de la paroi : /

@ Formulation continue : on considere que le systeme est inhomogene et
que le potentiel électrochimique varie continument et linéairement du
potentiel électrochimique maximal ,aj{ a gauche au potentiel
électrochimique minimal i, a droite. Soit £ la longueur entre les deux
extrémités du systeme et 7 le vecteur unitaire orienté de gauche a droite.
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13.3.2 Loi de Fick

£y Systéme discret

A Milieu continu

5y

Vi,

e Gradient de potentiel électrochimique : orienté sens croissant de i 4

__|_ =
Viig=— A g Pa (13.89)
@ Densité de courant de substance : orienté sens décroissant de iz
: Iy
Ja = ZA 7 (13.90)

e Loi de Fick : continue (3.75) et (13.89) dans (13.90)

Ja=—FaV iy (13.91) |
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13.3.2 Loi de Fick

e Source d’entropie : (3.73)

Ns = = (nh— i) Ia >0 (13.92)

@ Densité de courant de substance : orienté sens décroissant de iz

I
ja = ZA 7 (13.90)

e Gradient de potentiel électrochimique : orienté sens croissant de i 4

Vijia=— A A (13.89)

o Densité de source d’entropie : (13.89) et (13.90) dans (13.92)

Y5 Mg 1

— 2 — g4 . L > .
O v 7 T]A Viga =20 (1393)J
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13.3.3 Loi d’Ohm

@ Démarche : |a loi de Fick discrete pour une substance électriquement
chargée contient la loi d'Ohm discrete.

@ Systeme : deux sous-systemes simples constitués d'électrons de
conduction (substance A = e) aux potentiels électrochimiques i et [ .

il =pl +qp™ et i =pg +qey” (13.94)

@ Potentiels électrochimiques : la variation du potentiel chimique est
négligeable par rapport a la variation du potentiel électrostatique

il — o =pd — s e (o — 7)) 2qe (7 — ¢7) (13.95)

o Loi de Fick : (3.75) ou A =e

L=F% ()~ R e (o - ) (13.96)

@ Dérivée temporelle de la charge électrique : courant électrique

[=gq.]I (13.97)
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13.3.3 Loi d’Ohm

@ Conductivité électrique : électrons de conduction A = e
oc=q’F, (13.98)
o Courant électrique : (13.96) et (13.98) dans (13.97)

A
Izaz (<p+— go_) (13.99)
@ Loi d’Ohm : discréte (tension)

4 14

U=Ap=¢p" — p = O'AI pAI RI (13.100)J

@ Coefficient de conductivité électrique : o

@ Coefficient de résistivité électrique : p = o1

©Q Aire de la paroi : A
© Epaisseur de la paroi : /

@ Reésistance électrique :

R = p% (13.101)J
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13.3.3 Loi d’Ohm

@ Formulation continue : on considéere que le systeme est inhomogene et
que le potentiel électrostatique varie continument et linéairement du
potentiel électrostatique maximal ¢t a gauche au potentiel
électrostatique minimal ¢~ a droite. Soit /¢ la longueur entre les deux
extrémités du systeme et 7 le vecteur unitaire orienté de gauche a droite.

A o —1 Systéme discret

A gp+ — ) o Milieu continu

5y
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13.3.3 Loi d’Ohm

A o —1 Systeéme discret

A g0+ — ) © Milieu continu

5y

Vi

e Gradient de potentiel électrostatique : orienté sens croissant de ¢

_|_ o .
Vo=—2% gw P (13.102)
@ Densité de courant électrique : orienté sens décroissant de ¢
: I
Jo= 4 T (13.103)

@ Loi d’'Ohm : continue (13.99) et (13.102) dans (13.103)

jo=—0Vy (13.104) |
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13.3.3 Expérience - Loi d’Ohm

© On mesure le courant électrique I qui parcourt un fil a I'aide d'un
amperemetre branché en série avec le fil.

@ On mesure la tension électrique V ¢ = o — = aux bornes du fil a
I'aide d'un voltmetre branché en parallele avec le fil.

© On en déduit la résistance électrique R grace a la loi d'Ohm (13.100).

1/ 14
—_— —_— +_ _:_— p— —_— p—
U=Ap=p © O'AI pAI RI
~~

Dr. Sylvain Bréchet 13 Thermodynamique des milieux continus



13.3.4 Loi de Stokes

Démarche : on déduit la loi de Stokes pour un milieu continu en se
basant sur la loi de Stokes (3.48) pour un systeme homogene
interagissant avec |'environnement.

Systéme : un systeme avec une seule substance a température T et a
pression p est séparé par une paroi diatherme, mobile et imperméable de
I'environnement a pression p°*t.

Loi de Stokes : discrete

(p — peXt) — ¢V (3.48)
o Coefficient de frottement thermoélastique : &

Viscosité volumique et frottement interne :

n==¢VvV et T=p— p (13.105)

Loi de Stokes : discréete

TV =nV (13.106)
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13.3.4 Loi de Stokes

@ Loi de Stokes : discréete
TV =nV (13.106)

@ Volume : représentation cartésienne
V= / dr dy dz (13.107)
1%
@ Courant de volume : représentation cartésienne
V:IV:—/ V-jvda:dydz:/ V - vdxdydz (13.108)
1% 1%
o Loi de Stokes : discrete (13.107) et (13.108) dans (13.106)

7'/ dazdydz:n/ V - -vdxdydz (13.109)
1% 1%

@ Loi de Stokes : continue

T=nV- v (13.110))
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13.3.4 Loi de Stokes

e Source d’entropie : (3.51)

Yo = % (p—p™)V =0 (13.111)

@ Frottement interne :
T=p— peXt (13.105)

@ Dérivée temporelle du volume : représentation cartésienne

V= /V V -vdzdydz (13.108)
@ Source d’entropie :

Yg = /V os dx dydz (13.112)

o Densité de source d’entropie : (13.105) - (13.112) dans (13.111)

1
oy == 7(V-0) >0 (13.113)J
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13.3.5 Dissipation chimique

@ Systeme simple : constitué de substances chimiques liées par n
réactions chimiques d'affinité A, et de vitesse de réaction (2,.

@ Source d’entropie :
Yg = ! Zn:A Q. =0
S — T - avia =

@ Source d’entropie :

PP :/ osdxdydz
1%

@ Vitesse de réaction chimique :

(), :/ wq dr dy dz
1%

(3.48)

(13.112)

(13.114)

o Densité de source d’entropie : (13.112) et (13.114) dans (3.48)

1 n
s — m Aa a>0
o T; w

(13.115)J
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13.3.6 Densité de source d’entropie

@ Systeéme : milieu continu constitué de r substances chimiques
électriquement chargées liées par n réactions chimiques subissant des
déformations irréversibles et des transferts irréversibles de chaleur et de
matiére.

@ Densités de source d’entropie : processus irréversibles

@ Réactions chimiques :

_ % zn: Ay wa >0 (13.115)
=1
@ Déformations : loi de Stokes
s = % T(V-v) >0 (13.113)
© Transfert de chaleur : loi de Fourier
oy = % o (=VT) >0 (13.88)

Q@ Transfert de matiere : loi de Fick ou HA = A+ qa @

1 T
= D> _da(=Vja) = ZJA ~ Vpa—qaVe) >0 (13.93)
A_
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13.3.6 Densité de source d’entropie

@ Densité de source d’entropie du milieu continu : somme des densités
de sources d’'entropie dues aux processus quatre processus irréversibles
qui ont lieu dans ce milieu continu.

© Réactions chimiques
@ Déformations : loi de Stokes
© Transfert de chaleur : loi de Fourier

@ Transfert de matiere : loi de Fick

1 mn
05 = 7 Z:lwa.Aa—l—T(V-v)
T (13.116)

+js'(_VT)‘|‘Z ja- (= Vpa—qaVo)
A—1
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13.4 Applications

13.4 Applications
13.4.1 Force d’'Archimede
13.4.2 Accélérometre
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13.4.1 Force d’Archimede

@ Systéme : un flotteur de densité de masse m’
est immergé dans un récipient complétement
rempli de liquide de densité de masse m ou a
m > m’. Le récipient se déplace par rapport au @
sol avec une accélération constante a. Le

liquide est au repos par rapport au récipient. "
@ Théoreme du centre de masse : sans frottement
Z fext_ Vp:ma (1365)

@ Densité de force extérieure : densité de poids dans le liquide

Z fext =mg (13117)
o Gradient de pression : (13.117) dans (13.65)

Vp=m(g— a) (13.118)
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13.4.1 Force d’Archimede

@ Force d’Archimede : résultante des forces de

pression exercée par le liquide sur la surface S

du flotteur.
© —
Fy :/ p(—dA) (13.119)
& m
ou dA est orienté du flotteur vers le liquide.
Théoreme du gradient : champ scalaire pression p
Fy=— / pdA = — / VpdV (13.120)
S 1%

ou V est le volume du flotteur.

Gradient de pression :

Vp=m(g— a) (13.118)
Force d’Archimeéde : (13.118) dans (13.120) masse homogene m

Fy=—-—m(g— a) /V dVv (13.121)
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13.4.1 Force d’Archimede

o Force d’Archimede : (13.121) remise en forme

Fr=—-—mV(g— a) (13.122)J

Dans un fluide accéléré, i.e. a # 0, la force d'Archimeéde n'est pas
verticale : elle est oblique.

@ Principe d’Archimede : cas particulier : a =0

Fy=-mVg (principe d'Archimede) (13.123)J

Dans un fluide au repos, i.e. a = 0, la force d'Archiméde est verticale et
orientée vers le haut, et sa norme est égale au poids du fluide déplacé.

@ Accélérometre : on construit un accélérometre en attachant un flotteur
de densité de masse m’ a un fil qui est retenu au fond d'un récipient
complétement rempli de liquide de densité de masse m. Le récipient se
déplace par rapport au sol avec une accélération constante a. Le liquide
et le flotteur sont au repos par rapport au récipient.
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13.4.1 Expérience - Force d’Archimede

@ Un cylindre d'aluminium d’un litre est suspendu a une balance. La
balance indique une masse de 2.8 kg.

©@ En immergeant le cylindre dans I'eau, la masse apparente indiquée par la
balance est 1.8 kg. La différence d'1 kg correspond a la masse d'un litre
d'eau déplacée, c'est-a-dire la norme de la force d'Archimede divisée par
la norme du champ gravitationnel.

© En mettant alors le récipient dans lequel on a recueilli I'eau déplacée
entre la balance et le cylindre d'aluminium, la masse indiquée par la
balance est a nouveau de 2.8 kg.
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Expérience - Ludion

@ Un cylindre ou une bouteille remplie d'eau renferme une figurine ou une
éprouvette creuse contenant une poche d'air. Initialement, la masse
volumique de la figurine ou de I'éprouvette est inférieure a celle de |'eau.
La force d'Archimede exercée par |'eau est inférieure a son poids, elle se
trouve donc au sommet du cylindre ou de la bouteille.

© En appuyant sur le bouchon de la colonne ou en comprimant la bouteille,
on comprime la poche d'air et on fait ainsi entrer plus d'eau dans la
figurine ou dans |I'éprouvette. Sa masse volumique devient alors
supérieure a celle de I'eau. Ainsi, son poids surpasse la force d'Archimede

et elle coule.
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13.4.2 Accélérometre

@ Objet : flotteur homogéne de masse M’

@ Forces extérieures :
@ Poids: M'g
Q@ Tension: T
© Force d’Archimeéde : F4

@ Théoreme du centre de masse : flotteur

Mg+ Fa+T=Ma (13.124)
@ Masse : flotteur homogene de densité m/

M =m'V (13.125)
@ Force d'Archimede :

Fr=—mV(g— a) (13.126)
e Tension : dans le fil (13.124) ou m’ <m

T=-M(g—a)— Fa=(m—-m")V(g— a) (13.127)
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13.4.2 Accélérometre

@ Tension : dans le fil

T=(m-m")V(g— a) (13.127)
e Grandeurs vectorielles : (13.128)

Q Tension: T'=T,2+7T,9y

Q@ Accélération: a=ax

© Champ gravitationnel : g=—g79y
@ Tension : composantes

T.=—(m—m")Va

13.129
Ty=—(m-m)Vyg ( )
@ Angle d’inclinaison du fil :
1 .
tana = =2 = = ainsi a = arctan (ﬁ) (13.130)
Iy, g g

Le flotteur s’incline vers la droite si @ > 0 et vers la gauche si a < 0.
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13.4.2 Expérience - Accélérometre

@ Un ballon rempli d"hélium, fixé au bout d'un fil, est attaché au sol d'un
chariot. En accélérant le chariot vers la droite, il subit une force
d'Archimede orientée obliquement vers la droite le long du fil. En freinant
le chariot, il s'incline vers la gauche, car son accélération devient
négative. En faisant tourner uniformément le chariot autour d'un axe fixe,
la force d’Archiméde est orientée obliquement vers |'intérieur du virage en
raison de |'accélération centripete. L'angle d’'inclinaison du fil permet de
déterminer 'accélération du chariot.

© Une balle en plastique est attachée par un fil au fond d'un récipient
rempli d’eau. Lorsqu’on accélere le récipient, elle subit une force
d'Archiméde orientée le long du fil dans le sens du déplacement.
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