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13.1.1 Introduction historique

Thermodynamique avant Eckart et Stückelberg

Avant 1940-1950 :

1 Thermostatique : états d’équilibre

2 Quasi-thermostatique : processus entre des états
d’équilibre

Thermodynamique depuis Stückelberg

Après 1950 :

1 Thermodynamique : évolution temporelle des états

2 Equations de continuité : description en termes
d’équations différentielles locales

Feynman à propos de Stückelberg

Cern 1965 :

“He did the work and walks alone toward the
sunset ; and, here I am, covered in all the glory,
which rightfully should be his.”

Eckart

Stückelberg
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13.1.2 Système global et système local

Système
 global

Système
  local

x

Macroscopique

Microscopique

Système global :

1 Milieu continu de points {x }
2 Inéquilibre

3 Inhomogène

4 Non-uniforme

Système local :

1 Point x

2 Equilibre

3 Homogène

4 Uniforme
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13.1.2 Système global et système local

Système global :

1 Variable d’état extensive dynamique : quantité de mouvement P (t)

2 Variable d’état extensive thermique : entropie S (t)

3 Variable d’état extensive mécanique : volume V (t)

4 Variables d’état extensives chimiques : nombres de moles {NA (t)}
5 Variable d’état extensive électrique : charge électrique Q (t)

6 Fonction d’état :

F (t) ≡ F
(
P (t) , S (t) , V (t) , N1 (t) , . . . , Nr (t) , Q (t)

)
(13.1)

Système local :

1 Champ d’état densitaire dynamique : densité de quant. de mvt p (x, t)

2 Champ d’état densitaire thermique : densité d’entropie s (x, t)

3 Champs d’état densitaires chimiques : densités molaires {nA (x, t)}
4 Champ d’état densitaire électrique : dens. de charge électrique q (x, t)

5 Densité de fonction d’état :

f (x, t) ≡ f
(
p (x, t) , s (x, t) , n1 (x, t) , . . . , nr (x, t) , q (x, t)

)
(13.2)
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13.1.3 Lien entre système global et système local

1 Variable d’état extensive dynamique : quantité de mouvement : (13.3)

P (t) =

∫
V (t)

dP (x, t) =

∫
V (t)

dV (x)
dP (x, t)

dV (x)
=

∫
V (t)

dV (x) p (x, t)

2 Variable d’état extensive thermique : entropie : (13.4)

S (t) =

∫
V (t)

dS(x, t) =

∫
V (t)

dV (x)
dS(x, t)

dV (x)
=

∫
V (t)

dV (x) s (x, t)

3 Variables d’état extensives chimiques : nombre de moles (13.5)

NA (t) =

∫
V (t)

dNA(x, t) =

∫
V (t)

dV (x)
dNA(x, t)

dV (x)
=

∫
V (t)

dV (x) nA (x, t)

4 Variable d’état extensive électrique : charge électrique (13.6)

Q (t) =

∫
V (t)

dQ(x, t) =

∫
V (t)

dV (x)
dQ(x, t)

dV (x)
=

∫
V (t)

dV (x) q (x, t)

5 Fonctions d’état extensives scalaires : (13.7)

F (t) =

∫
V (t)

dF (x, t) =

∫
V (t)

dV (x)
dF (x, t)

dV (x)
=

∫
V (t)

dV (x) f (x, t)
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13.1.4 Equation de bilan

Fonction d’état extensive scalaire : coordonnées cartésiennes du
centre x = (x, y, z) et volume dV (x) = dx dy dz de cubes infinitésimaux

F (t) =

∫
V (t)

dF (x, y, z, t) =

∫
V (t)

f (x, y, z, t) dx dy dz (13.8)

Dérivée temporelle de la fonction d’état extensive scalaire : (13.9)

Ḟ (t) =

∫
V (t)

∂f (x, y, z, t)

∂t
dx dy dz ≡

∫
V (t)

∂tf (x, y, z, t) dx dy dz

Equation de bilan : fonction d’état extensive scalaire

Ḟ (t) = IF (t) + ΣF (t) (1.12)
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13.1.4 Equation de bilan

1 Source de fonction d’état extensive scalaire : à l’intérieur du système
de volume V (t)

ΣF (t) =

∫
V (t)

σf (x, y, z, t) dx dy dz (13.10)

2 Courant de la fonction extensive scalaire : à travers la surface S (t)
de l’enceinte du système par rapport à un référentiel d’inertie immobile

IF (t) =

∫
S(t)

jfx (x, y, z, t) dy dz +

∫
S(t)

jfy (x, y, z, t) dz dx

+

∫
S(t)

jfz (x, y, z, t) dx dy

(13.11)
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13.1.5 Densité de courant

1 Système infinitésimal : cube fixe de volume dx dy dz centré en (x, y, z)

Densité de courant : entrant à l’arrière et sortant à l’avant

jfx (x, y, z, t) = jfx

(
x− dx

2
, y, z, t

)
− jfx

(
x+

dx

2
, y, z, t

)
(13.12)

Développement limité : au 1 er ordre

jfx

(
x± dx

2
, y, z, t

)
= jfx (x, y, z, t)±

1

2

∂jfx (x, y, z, t)

∂x
dx (13.13)

Densité de courant : (13 :13) dans (13.12)

jfx (x, y, z, t) = − ∂jfx (x, y, z, t)

∂x
dx (13.14)
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13.1.5 Densité de courant

2 Système infinitésimal : cube fixe de volume dx dy dz centré en (x, y, z)

Densité de courant : entrant à gauche et sortant à droite

jfy (x, y, z, t) = jfy

(
x, y − dy

2
, z, t

)
− jfy

(
x, y +

dy

2
, z, t

)
(13.15)

Développement limité : au 1 er ordre

jfy

(
x, y ± dy

2
, z, t

)
= jfy (x, y, z, t)±

1

2

∂jfy (x, y, z, t)

∂y
dy (13.16)

Densité de courant : (13 :16) dans (13.15)

jfy (x, y, z, t) = − ∂jfy (x, y, z, t)

∂y
dy (13.17)
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13.1.5 Densité de courant

3 Système infinitésimal : cube fixe de volume dx dy dz centré en (x, y, z)

Densité de courant : entrant en bas et sortant en haut

jfz (x, y, z, t) = jfz

(
x, y, z − dz

2
, t

)
− jfz

(
x, y, z +

dz

2
, t

)
(13.18)

Développement limité : au 1 er ordre

jfz

(
x, y, z ± dz

2
, t

)
= jfz (x, y, z, t)±

1

2

∂jfz (x, y, z, t)

∂z
dz (13.19)

Densité de courant : (13 :19) dans (13.18)

jfz (x, y, z, t) = − ∂jfz (x, y, z, t)

∂z
dz (13.20)
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13.1.5 Courant

Courant de la fonction extensive scalaire : à travers l’enceinte du
système de surface S (t)

IF (t) =

∫
S(t)

jfx (x, y, z, t) dy dz +

∫
S(t)

jfy (x, y, z, t) dz dx

+

∫
S(t)

jfz (x, y, z, t) dx dy

(13.11)

Densité de courant : composantes cartésiennes

jfx (x, y, z, t) = − ∂jfx (x, y, z, t)

∂x
dx (13.14)

jfy (x, y, z, t) = − ∂jfy (x, y, z, t)

∂y
dy (13.17)

jfz (x, y, z, t) = − ∂jfz (x, y, z, t)

∂z
dz (13.20)

Vecteur densité de courant : représentation cartésienne

jf (x, y, z, t) =
(
jfx (x, y, z, t) , jfy (x, y, z, t) , jfz (x, y, z, t)

)
(13.21)
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13.1.5 Courant

Courant de la fonction extensive scalaire : (13.14), (13.17) et (13.20)
dans (13.11) : intégrale sur le volume

IF (t) = −
∫
V (t)

∂jfx (x, y, z)

∂x
dx dy dz −

∫
V (t)

∂jfy (x, y, z)

∂y
dx dy dz

−
∫
V (t)

∂jfz (x, y, z)

∂z
dx dy dz (13.22)

Opérateur vectoriel gradient : représentation cartésienne

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(13.23)

Divergence de la densité de courant : scalaire

∇ · jf (x, y, z) =
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
·

jfx (x, y, z)
jfy (x, y, z)
jfz (x, y, z)

 (13.24)

=
∂ jfx (x, y, z)

∂x
+

∂ jfy (x, y, z)

∂y
+

∂ jfz (x, y, z)

∂z

≡ ∂x jfx (x, y, z) + ∂y jfy (x, y, z) + ∂z jfz (x, y, z)
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13.1.7 Equations de continuité

Equation de bilan : fonction d’état extensive scalaire

Ḟ (t) = IF (t) + ΣF (t) (1.12)

Dérivée temporelle de la fonction d’état extensive scalaire :

Ḟ (t) =

∫
V (t)

∂tf (x, y, z, t) dx dy dz (13.9)

Source de fonction d’état extensive scalaire :

ΣF (t) =

∫
V (t)

σf (x, y, z, t) dx dy dz (13.10)

Courant de la fonction extensive scalaire : (13.24) dans (13.22)

IF (t) = −
∫
V (t)

∇ · jf (x, y, z, t) dx dy dz (13.25)

Equation de bilan :∫
V (t)

∂tf (x, y, z, t) dx dy dz = −
∫
V (t)

∇ · jf (x, y, z, t) dx dy dz

+

∫
V (t)

σf (x, y, z, t) dx dy dz (13.26)
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13.1.7 Equations de continuité

Equation de bilan : fonction d’état extensive scalaire

Ḟ (t) = IF (t) + ΣF (t) (1.12)

Equation de bilan :∫
V (t)

∂tf (x, y, z, t) dx dy dz = −
∫
V (t)

∇ · jf (x, y, z, t) dx dy dz

+

∫
V (t)

σf (x, y, z, t) dx dy dz (13.26)

Equation de continuité : équation de bilan local en (x, y, z)

∂tf (x, y, z, t) +∇ · jf (x, y, z, t) = σf (x, y, z, t) (13.27)

L’équation de continuité (13.26) décrit l’évolution temporelle et spatiale
de la densité de fonction d’état scalaire f (x, y, z, t) autour du point
(x, y, z) au temps t par rapport à un référentiel d’inertie immobile.
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13.1.6 Divergence

Divergences de champs vectoriels : symétrie sphérique

1 Champ gravitationnel : terre homogène de masse volumique ρ > 0

∇ · g = − 4πGρ < 0

Divergence négative : les vecteurs champ gravitationnel g convergent
vers la terre.

2 Champ électrique : sphère métallique de densité de charge q > 0

∇ ·E =
q

ε0
> 0

Divergence positive : les vecteurs champ électrique E divergent de la
sphère dans le vide de permittivité électrique ε0.

M 
int gg

g

g

g

g

g

g g

g

EE

E

E

E

E

E

E E

E
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13.1.6 Expérience - Générateur de van der Graaf

1 Par contact avec une sphère électriquement chargée, la tension électrique
∆φ entre la tête de la fille et l’air ambiant fait se dresser ses cheveux.
Les cheveux s’alignent radialement selon les vecteurs champ électrique E
orientés radialement.

∇ ·E =
q

ε0
> 0

2 Les ruban de papier s’alignent radialement selon les lignes de champ
électrique E à cause de la tension électrique ∆φ entre la baguette
métallique et l’air ambiant.
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13.1.6 Divergence

Vitesse : mouvement rectiligne selon l’axe des abscisses

v (x) = vx (x) x̂

1 Expansion : divergence positive

∇ · v (x) =
dvx (x)

dx
> 0

2 Contraction : divergence négative

∇ · v (x) =
dvx (x)

dx
< 0
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13.1.7 Equations de continuité

Densité de fonction d’état vectorielle : représentation cartésienne

f (x, y, z, t) =
(
fx (x, y, z, t) , fy (x, y, z, t) , fz (x, y, z, t)

)
(13.28)

Equations de continuités : composantes cartésienne de f (x, y, z, t)

∂tfx (x, y, z, t) +∇ · jfx (x, y, z, t) = σfx (x, y, z, t) (13.29)

∂tfy (x, y, z, t) +∇ · jfy (x, y, z, t) = σfy (x, y, z, t) (13.30)

∂tfz (x, y, z, t) +∇ · jfz (x, y, z, t) = σfz (x, y, z, t) (13.31)

Densité de source vectorielle : représentation cartésienne

σf (x, y, z, t) =
(
σfx (x, y, z, t) , σfy (x, y, z, t) , σfz (x, y, z, t)

)
(13.32)

Densité de courant tensorielle : représentation cartésienne

jf (x, y, z, t) =
(
jfx (x, y, z, t) , jfy (x, y, z, t) , jfz (x, y, z, t)

)
(13.33)

Dr. Sylvain Bréchet 13 Thermodynamique des milieux continus 21 / 66



13.1.7 Equations de continuité

Equation de continuité : fonction d’état scalaire F (t)

∂tf (x, y, z, t) +∇ · jf (x, y, z, t) = σf (x, y, z, t) (13.27)

Equation de continuité : fonction d’état vectorielle F (t)

∂tf (x, y, z, t) +∇ · jf (x, y, z, t) = σf (x, y, z, t) (13.34)

Densité de courant tensorielle : représentation cartésienne (13.35)

jf (x, y, z, t) =


jfxx (x, y, z, t) jfxy (x, y, z, t) jfxz (x, y, z, t)

jfyx (x, y, z, t) jfyy (x, y, z, t) jfyz (x, y, z, t)

jfzx (x, y, z, t) jfzy (x, y, z, t) jfzz (x, y, z, t)


Divergence vectorielle de densité de courant tensorielle : (13.36)

∇ · jf =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
jfxx jfxy jfxz

jfyx jfyy jfyz

jfzx jfzy jfzz

 = (. . . , . . . , . . .)
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13.2 Thermodynamique d’un milieu continu
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Dr. Sylvain Bréchet 13 Thermodynamique des milieux continus 23 / 66



13.2.1 Champs d’état et fonctions de champs d’état

Système thermodynamique : milieu continu constitué de r substances
chimiques électriquement chargées liées par n réactions chimiques en
mouvement.

Champs d’état :

1 p (x, y, z, t) : densité de quantité de mouvement

2 s (x, y, z, t) : densité d’entropie

3 {nA (x, y, z, t) } : densités de substances chimiques où A = 1, . . . , r

4 q (x, y, z, t) : densité de charge électrique

Fonctions de champs d’état :

1 v (p, s, {nA }, q) : vitesse
2 e (p, s, {nA }, q) : densité d’énergie

3 m (s, {nA }, q) : densité de masse

4 u (s, {nA }, q) : densité d’énergie interne
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13.2.2 Densités de source

1 Quantité de mouvement : premier principe (translation)

Source : forces extérieures

ΣP =
∑

F ext (1.20)

Densité de source : densités de forces extérieures

σp =
∑

f ext (13.37)

2 Entropie : deuxième principe (évolution)

Source : non négative

ΣS ⩾ 0 (2.1)

Densité de source : non négative

σs ⩾ 0 (13.38)
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13.2.2 Densités de source

3 Quantité de substance A : réactions chimiques a = 1, . . . , n

Source : réactions chimiques de vitesse Ωa

ΣA =
n∑

a=1

Ωa νaA (8.16)

Densité de source : réactions chimiques de densité de vitesse ωa

σA =
n∑

a=1

ωa νaA (13.39)

4 Charge électrique :

Source : loi de conservation

ΣQ = 0 (8.40)

Densité de source : loi de conservation

σq = 0 (13.41)
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13.2.3 Equations de continuité des champs d’état

Equations de continuités :

∂tf +∇ · jf = σf (fonction d’état scalaire) (13.27)

∂tf +∇ · jf = σf (fonction d’état vectorielle) (13.34)

1 Quantité de mouvement : f ≡ p : σp =
∑

f ext

∂t p+∇ · jp =
∑

f ext (13.46)

2 Entropie : f ≡ s : σs ⩾ 0

∂t s+∇ · js = σs ⩾ 0 (13.47)

3 Quantité de substance chimique A : f ≡ nA : σA =
∑n

a=1 ωa νaA

∂t nA +∇ · jA =

n∑
a=1

ωa νaA (13.48)

4 Charge électrique : f ≡ q : σq = 0

∂t q +∇ · jq = 0 (13.49)
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13.2.4 Théorème du centre de masse

Quantité de mouvement : équation de continuité

∂t p+∇ · jp =
∑

f ext (13.46)

Densité de quantité de mouvement :

p = mv (13.50)

Quantité de mouvement : équation de continuité (13.50) dans (13.46)

m∂t v + (∂t m)v +∇ · jp =
∑

f ext (13.51)

Densité de courant et tenseur des contraintes :

jp ≡ pv − τ = mv v − τ (13.52)

Densité de courant : représentation cartésienne (13.53)
jpxx jpxy jpxz

jpyx jpyy jpyz

jpzx jpzy jpzz

 =


mvx vx − τxx mvx vy − τxy mvx vz − τxz

mvy vx − τyx mvy vy − τyy mvy vz − τyz

mvz vx − τzx mvz vy − τzy mvz vz − τzz


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13.2.4 Théorème du centre de masse

Densité de courant de quantité de mouvement :

jp ≡ pv − τ = mv v − τ (13.52)

Règle de Leibnitz : divergence d’un produit de vecteurs

∇ · (pv) = p ·∇v + (∇ · p)v = mv ·∇v +∇ · (mv)v (13.54)

Divergence vectorielle de la densité de courant : (13.52) et (13.54)

∇ · jp = mv ·∇v +∇ · (mv)v − ∇ · τ (13.55)

Quantité de mouvement : équation de continuité

m∂t v + (∂t m)v +∇ · jp =
∑

f ext (13.51)

Quantité de mouvement : équation de continuité (13.55) dans (13.51)

m (∂t v + v ·∇v) +
(
∂t m+∇ · (mv)

)
v − ∇ · τ =

∑
f ext (13.56)

Le tenseurs des contraintes τ est défini dans le référentiel local du fluide.
L’équation de continuité (13.56) doit être étudiée dans ce référentiel.
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13.2.4 Théorème du centre de masse

Equation d’évolution : référentiel d’inertie immobile

m (∂t v + v ·∇v) +
(
∂t m+∇ · (mv)

)
v − ∇ · τ =

∑
f ext (13.56)

Dérivée temporelle de la vitesse : référentiel local du fluide

v̇ = ∂t v + v ·∇v ainsi v̇ = ∂t v si v = 0 (13.57)

Equation d’évolution : référentiel local du fluide

m v̇ +
(
∂t m+∇ · (mv)

)
v − ∇ · τ =

∑
f ext (13.58)

Cette équation d’évolution doit être valide par rapport à tous les
référentiels d’inertie. Elle doit donc être indépendante de la vitesse v ce
qui donne l’équation de continuité de la masse.

Masse : équation de continuité : absence de densité de source

∂t m+∇ · (mv) = 0 (13.59)
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13.2.4 Théorème du centre de masse

Théorème du centre de masse : (13.59) et (13.57) dans (13.56)∑
f ext +∇ · τ = m v̇ (13.60)

La divergence du tenseur des contraintes ∇ · τ est une densité de force
due à la déformation du système local infinitésimal par les systèmes
locaux voisins.

Tenseur des contraintes : symétrique

τ = (τ − p)1 + τ ′ (13.61)

où 1 est le tenseur identité représenté par la matrice identité.

1 Pression : p 1 : expansion et contraction réversibles
changement de volume sans changement de forme

2 Frottement interne scalaire : τ 1 : expansion et contraction irréversibles
changement de volume sans changement de forme

3 Frottement interne tensoriel : τ ′ : cisaillement irréversible
changement de forme sans changement de volume
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13.2.4 Théorème du centre de masse

Tenseur des contraintes : symétrique

τ = (τ − p)1 + τ ′ (13.61)

1 Pression : p 1 : expansion et contraction réversibles
changement de volume sans changement de forme

2 Frottement interne scalaire : τ 1 : expansion et contraction irréversibles
changement de volume sans changement de forme : τ = 1

3
tr (τ + p 1)

3 Frottement interne tensoriel : τ ′ : cisaillement irréversible
changement de forme sans changement de volume : tr τ ′ = 0

Tenseur des contraintes : représentation cartésienne (13.62)
τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 =


τ − p+ τ ′xx τ ′xy τ ′xz

τ ′xy τ − p+ τ ′yy τ ′yz

τ ′xz τ ′yz τ − p+ τ ′zz


Tenseur des contraintes : sans frottement

τ = − p 1 (réversible) (13.63)
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13.2.4 Théorème du centre de masse

Théorème du centre de masse : (13.61) dans (13.60)∑
f ext − ∇ p+∇ τ +∇ · τ ′ = m v̇ (13.64)

La divergence du tenseur de frottement ∇ · τ ′ permet de rendre compte
de la viscosité dans l’équation fondamentale de la mécanique des fluides
appelée équation de Navier-Stokes (chapitre 14).

Théorème du centre de masse : sans frottement : τ = 0 et τ ′ = 0∑
f ext − ∇ p = m v̇ (réversible) (13.65)

Le gradient de pression −∇ p permet de rendre compte de la force
exercée par une colonne de liquide en hydrostatique : il est à la base de la
force d’Archimède (application du chapitre 13). Il apparâıt également en
hydrodynamique dans le théorème de Bernoulli et permet de rendre
compte de l’effet Venturi (chapitre 14).
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13.2.5 Puissance mécanique

Dérivée temporelle du volume : démontré en exercice

V̇ (t) =

∫
V (t)

∇ · v (x, y, z, t) dx dy dz (13.66)

Puissance mécanique : déformation réversible homogène

PW = − p V̇ = − p

∫
V (t)

∇ · v dx dy dz (réversible) (13.67)

Puissance mécanique : trace du produit matriciel

PW = −
∫
V (t)

(p 1) : (∇v) dx dy dz (réversible) (13.68)

Tenseur des contraintes : symétrique

τ = (τ − p)1 + τ ′ (irréversible) (13.61)

Puissance mécanique : déformation irréversible non-homogène

PW =

∫
V (t)

τ : (∇v) dx dy dz (irréversible) (13.69)
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13.2.5 Puissance mécanique

Puissance mécanique : déformation réversible

PW = −
∫
V (t)

p∇ · v dx dy dz = −
∫
V (t)

(p 1) : (∇v) dx dy dz (13.68)

Densité de puissance mécanique : représentation cartésienne

− (p 1) : (∇v) = − tr

p 0 0
0 p 0
0 0 p

 ∂
∂x
∂
∂y
∂
∂z

 (vx, vy, vz)


= − tr


p 0 0
0 p 0
0 0 p


∂vx

∂x
∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z




= − p

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
= − p∇ · v
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13.2.6 Equation de continuité de l’énergie

Equation de continuité :

∂tf +∇ · jf = σf (fonction d’état scalaire) (13.27)

Energie et énergie interne : premier principe

Source : puissance due aux forces extérieures (1.49) donne (13.69)

ΣE = P ext =
∑

F ext ·v et ΣU = PW =

∫
V (t)

τ : (∇v) dx dy dz

Densité de source : densités de puissance extérieure et mécanique

σe =
∑

f ext · v et σu = τ : (∇v) (13.70)

Equation de continuité de l’énergie : f ≡ e

∂t e+∇ · je =
∑

f ext · v (13.71)

Equation de continuité de l’énergie interne : f ≡ u

∂t u+∇ · ju = τ : (∇v) (13.72)
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13.2.6 Equation de continuité de l’énergie

Densité de source d’énergie interne :

σu = τ : (∇v) = (τ − p)∇ · v + τ ′ : (∇v) (13.70)

Densité de source d’énergie interne : représentation cartésienne

τ : (∇v) = tr

τxx τxy τxz
τxy τyy τyz
τxz τyz τzz

 ∂
∂x
∂
∂y
∂
∂z

 (vx, vy, vz)

 (13.73)

= tr

τ − p+ τ ′xx τ ′xy τ ′xz
τ ′xy τ − p+ τ ′yy τ ′yz
τ ′xz τyz τ − p+ τ ′zz

∂vx

∂x
∂vz

∂x
∂vz

∂x
∂vx

∂y
∂vz

∂y
∂vz

∂y
∂vx

∂z
∂vz

∂z
∂vz

∂z


= (τ − p)

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)

+ tr

τ ′xx τ ′xy τ ′xz
τ ′xy τ ′yy τ ′yz
τ ′xz τ ′yz τ ′zz

∂vx

∂x
∂vz

∂x
∂vz
∂x

∂vx

∂y
∂vz

∂y
∂vz
∂y

∂vx

∂z
∂vz

∂z
∂vz
∂z


= (τ − p)∇ · v + τ ′ : (∇v)
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13.2.7 Densités de courant

Courant d’énergie interne :

IU (t) = IQ (t) + IC (t) (1.50)

Courant d’énergie interne : (13.25)

IU (t) = −
∫
V (t)

∇ · ju (x, y, z, t) dx dy dz (13.74)

Courant de chaleur : (13.25)

IQ (t) = −
∫
V (t)

∇ · jQ (x, y, z, t) dx dy dz (13.75)

Courant de chaleur : température homogène : T (t) = T (x, y, z, t)

IQ (t) = T (t) IS (t)

= −
∫
V (t)

∇ ·
(
T (x, y, z, t) js (x, y, z, t)

)
dx dy dz

(13.76)

Densité de courant de chaleur : (13.75) et (13.76)

jQ (x, y, z, t) = T (x, y, z, t) js (x, y, z, t) (13.77)
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13.2.7 Densités de courant

Courant énergétique de matière : (13.25)

IC (t) = −
∫
V (t)

∇ · jC (x, y, z, t) dx dy dz (13.78)

Courant énergétique de matière : µ̄A (t) = µ̄A (x, y, z, t)

IC (t) =
r∑

A=1

µ̄A (t) IA (t)

= −
∫
V (t)

∇ ·
( r∑

A=1

µ̄A (x, y, z, t) jA (x, y, z, t)
)
dx dy dz

(13.79)

Densité de courant énergétique de matière : (13.78) et (13.79)

jC (x, y, z, t) =
r∑

A=1

µ̄A (x, y, z, t) jA (x, y, z, t) (13.80)

Densité de courant d’énergie interne :

ju = jQ + jC = T js +
r∑

A=1

µ̄A jA (13.81)
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13.3 Irréversibilité en thermodynamique des milieux continus

13.3 Irréversibilité en thermodynamique des milieux continus
13.3.1 Loi de Fourier
13.3.2 Loi de Fick
13.3.3 Loi d’Ohm
13.3.4 Loi de Stokes
13.3.5 Dissipation chimique
13.3.6 Densité de source d’entropie
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12.3.1 Loi de Fourier

Démarche : on déduit la loi de Fourier pour un milieu continu en se
basant sur la loi de Fourier (3.22) pour des sous-systèmes discrets.

Système : deux sous-systèmes simples aux températures T+ et T−

séparés par une paroi diatherme, immobile et imperméable.

Loi de Fourier :

IQ = κ
A

ℓ

(
T+ − T−

)
(3.22)

1 Coefficient de conductivité thermique : κ

2 Aire de la paroi : A

3 Epaisseur de la paroi : ℓ

Formulation continue : on considère que le système est inhomogène et
que la température varie continument et linéairement de la température
maximale T+ à gauche à la température minimale T− à droite. Soit ℓ la
longueur entre les deux extrémités du système et r̂ le vecteur unitaire
orienté de gauche à droite.
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13.3.1 Loi de Fourier

T+ I

T –jQ

r

T+

T –

Milieu continu

Système discret

A

A

Gradient de température : orienté sens croissant de T

∇T = − T+ − T−

ℓ
r̂ (13.82)

Densité de courant de chaleur : orienté sens décroissant de T

jQ =
IQ
A

r̂ (13.83)

Loi de Fourier : continue (3.22) et (13.82) dans (13.83)

jQ = −κ∇T (12.84)
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13.3.1 Loi de Fourier

Températures voisines : T+ − T− ≪ T

T+ T− ≃ T 2 où T =
T+ + T−

2
(13.85)

Source d’entropie : (13.85) dans (3.22)

ΣS =
(
T+ − T−) IQ

T 2
⩾ 0 (13.86)

Densité de courant d’entropie : orienté sens décroissant de T

js =
IS
A

r̂ =
1

A

IQ
T

r̂ (13.87)

Gradient de température : orienté sens croissant de T

∇T = − T+ − T−

ℓ
r̂ (13.82)

Densité de source d’entropie : (13.82) et (13.87) dans (13.86)

σs =
ΣS

V
=

ΣS

ℓA
= − 1

T
js ·∇T ⩾ 0 (13.88)
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13.3.2 Loi de Fick

Démarche : on déduit la loi de Fick pour un milieu continu en se basant
sur la loi de Fick (3.75) pour des sous-systèmes discrets.

Système : deux sous-systèmes simples avec une seule substance
électriquement chargée à température T et aux potentiels
électrochimiques µ̄+

A et µ̄−
A séparés par une paroi diatherme, immobile et

perméable.

Loi de Fick : µ+
A → µ̄+

A et µ−
A → µ̄−

A

IA = FA
A

ℓ

(
µ̄+
A − µ̄−

A

)
(3.75)

1 Coefficient de diffusion électrochimique : FA

2 Aire de la paroi : A

3 Epaisseur de la paroi : ℓ

Formulation continue : on considère que le système est inhomogène et
que le potentiel électrochimique varie continument et linéairement du
potentiel électrochimique maximal µ̄+

A à gauche au potentiel
électrochimique minimal µ̄−

A à droite. Soit ℓ la longueur entre les deux
extrémités du système et r̂ le vecteur unitaire orienté de gauche à droite.
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13.3.2 Loi de Fick

A

A

Milieu continu

Système discret

r̂

jA

IA

Gradient de potentiel électrochimique : orienté sens croissant de µ̄A

∇ µ̄A = −
µ̄+
A − µ̄−

A

ℓ
r̂ (13.89)

Densité de courant de substance : orienté sens décroissant de µ̄A

jA =
IA
A

r̂ (13.90)

Loi de Fick : continue (3.75) et (13.89) dans (13.90)

jA = −FA ∇ µ̄A (13.91)
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13.3.2 Loi de Fick

Source d’entropie : (3.73)

ΣS =
1

T

(
µ̄+
A − µ̄−

A

)
IA ⩾ 0 (13.92)

Densité de courant de substance : orienté sens décroissant de µ̄A

jA =
IA
A

r̂ (13.90)

Gradient de potentiel électrochimique : orienté sens croissant de µ̄A

∇ µ̄A = −
µ̄+
A − µ̄−

A

ℓ
r̂ (13.89)

Densité de source d’entropie : (13.89) et (13.90) dans (13.92)

σs =
ΣS

V
=

ΣS

ℓA
= − 1

T
jA ·∇ µ̄A ⩾ 0 (13.93)
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13.3.3 Loi d’Ohm

Démarche : la loi de Fick discrète pour une substance électriquement
chargée contient la loi d’Ohm discrète.

Système : deux sous-systèmes simples constitués d’électrons de
conduction (substance A = e) aux potentiels électrochimiques µ̄+

e et µ̄−
e .

µ̄+
e = µ+

e + qe φ
+ et µ̄−

e = µ−
e + qe φ

− (13.94)

Potentiels électrochimiques : la variation du potentiel chimique est
négligeable par rapport à la variation du potentiel électrostatique

µ̄+
e − µ̄−

e = µ+
e − µ−

e + qe
(
φ+ − φ−) ≃ qe

(
φ+ − φ−) (13.95)

Loi de Fick : (3.75) où A = e

Ie = Fe
A

ℓ

(
µ̄+
e − µ̄−

e

)
≃ Fe

A

ℓ
qe

(
φ+ − φ−

)
(13.96)

Dérivée temporelle de la charge électrique : courant électrique

I = qe Ie (13.97)
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13.3.3 Loi d’Ohm

Conductivité électrique : électrons de conduction A = e

σ = q2e Fe (13.98)

Courant électrique : (13.96) et (13.98) dans (13.97)

I = σ
A

ℓ

(
φ+ − φ−

)
(13.99)

Loi d’Ohm : discrète (tension)

U = ∆φ = φ+ − φ− =
1

σ

ℓ

A
I = ρ

ℓ

A
I ≡ RI (13.100)

1 Coefficient de conductivité électrique : σ

2 Coefficient de résistivité électrique : ρ = σ−1

3 Aire de la paroi : A

4 Epaisseur de la paroi : ℓ

Résistance électrique :

R = ρ
ℓ

A
(13.101)
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13.3.3 Loi d’Ohm

Formulation continue : on considère que le système est inhomogène et
que le potentiel électrostatique varie continument et linéairement du
potentiel électrostatique maximal φ+ à gauche au potentiel
électrostatique minimal φ− à droite. Soit ℓ la longueur entre les deux
extrémités du système et r̂ le vecteur unitaire orienté de gauche à droite.

A

A

Milieu continu

Système discret

j+

j+ j
_

j
_

r̂

jq

I
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13.3.3 Loi d’Ohm

A

A

Milieu continu

Système discret

j+

j+ j
_

j
_

r̂

jq

I

Gradient de potentiel électrostatique : orienté sens croissant de φ

∇φ = − φ+ − φ−

ℓ
r̂ (13.102)

Densité de courant électrique : orienté sens décroissant de φ

jq =
I

A
r̂ (13.103)

Loi d’Ohm : continue (13.99) et (13.102) dans (13.103)

jq = −σ∇φ (13.104)
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13.3.3 Expérience - Loi d’Ohm

1 On mesure le courant électrique I qui parcourt un fil à l’aide d’un
ampèremètre branché en série avec le fil.

2 On mesure la tension électrique ∇φ = φ+ − φ− aux bornes du fil à
l’aide d’un voltmètre branché en parallèle avec le fil.

3 On en déduit la résistance électrique R grâce à la loi d’Ohm (13.100).

U = ∆φ = φ+ − φ− =
1

σ

ℓ

A
I = ρ

ℓ

A︸︷︷︸
=R

I = RI
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13.3.4 Loi de Stokes

Démarche : on déduit la loi de Stokes pour un milieu continu en se
basant sur la loi de Stokes (3.48) pour un système homogène
interagissant avec l’environnement.

Système : un système avec une seule substance à température T et à
pression p est séparé par une paroi diatherme, mobile et imperméable de
l’environnement à pression p ext.

Loi de Stokes : discrète(
p− p ext

)
= ξ V̇ (3.48)

Coefficient de frottement thermoélastique : ξ

Viscosité volumique et frottement interne :

η = ξ V et τ = p− p ext (13.105)

Loi de Stokes : discrète

τ V = η V̇ (13.106)
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13.3.4 Loi de Stokes

Loi de Stokes : discrète

τ V = η V̇ (13.106)

Volume : représentation cartésienne

V =

∫
V

dx dy dz (13.107)

Courant de volume : représentation cartésienne

V̇ = IV = −
∫
V

∇ · jv dx dy dz =

∫
V

∇ · v dx dy dz (13.108)

Loi de Stokes : discrète (13.107) et (13.108) dans (13.106)

τ

∫
V

dx dy dz = η

∫
V

∇ · v dx dy dz (13.109)

Loi de Stokes : continue

τ = η∇ · v (13.110)

Dr. Sylvain Bréchet 13 Thermodynamique des milieux continus 53 / 66



13.3.4 Loi de Stokes

Source d’entropie : (3.51)

ΣS =
1

T

(
p− p ext

)
V̇ ⩾ 0 (13.111)

Frottement interne :

τ = p− p ext (13.105)

Dérivée temporelle du volume : représentation cartésienne

V̇ =

∫
V

∇ · v dx dy dz (13.108)

Source d’entropie :

ΣS =

∫
V

σs dx dy dz (13.112)

Densité de source d’entropie : (13.105) - (13.112) dans (13.111)

σs =
1

T
τ (∇ · v) ⩾ 0 (13.113)
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13.3.5 Dissipation chimique

Système simple : constitué de substances chimiques liées par n
réactions chimiques d’affinité Aa et de vitesse de réaction Ωa.

Source d’entropie :

ΣS =
1

T

n∑
a=1

Aa Ωa ⩾ 0 (3.48)

Source d’entropie :

ΣS =

∫
V

σs dx dy dz (13.112)

Vitesse de réaction chimique :

Ωa =

∫
V

ωa dx dy dz (13.114)

Densité de source d’entropie : (13.112) et (13.114) dans (3.48)

σs =
1

T

n∑
a=1

Aa ωa ⩾ 0 (13.115)
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13.3.6 Densité de source d’entropie

Système : milieu continu constitué de r substances chimiques
électriquement chargées liées par n réactions chimiques subissant des
déformations irréversibles et des transferts irréversibles de chaleur et de
matière.

Densités de source d’entropie : processus irréversibles

1 Réactions chimiques :

σs =
1

T

n∑
a=1

Aa ωa ⩾ 0 (13.115)

2 Déformations : loi de Stokes

σs =
1

T
τ (∇ · v) ⩾ 0 (13.113)

3 Transfert de chaleur : loi de Fourier

σs =
1

T
js · (−∇T ) ⩾ 0 (13.88)

4 Transfert de matière : loi de Fick où µ̄A = µA + qA φ

σs =
1

T

r∑
A=1

jA ·(−∇ µ̄A) =
1

T

r∑
A=1

jA ·
(
− ∇µA− qA ∇φ

)
⩾ 0 (13.93)
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13.3.6 Densité de source d’entropie

Densité de source d’entropie du milieu continu : somme des densités
de sources d’entropie dues aux processus quatre processus irréversibles
qui ont lieu dans ce milieu continu.

1 Réactions chimiques

2 Déformations : loi de Stokes

3 Transfert de chaleur : loi de Fourier

4 Transfert de matière : loi de Fick

σs =
1

T

{
n∑

a=1

ωa Aa + τ (∇ · v)

+ js · (−∇T ) +
r∑

A=1

jA ·
(
− ∇µA − qA ∇φ

)} (13.116)
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13.4 Applications

13.4 Applications
13.4.1 Force d’Archimède
13.4.2 Accéléromètre
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13.4.1 Force d’Archimède

Système : un flotteur de densité de masse m′

est immergé dans un récipient complètement
rempli de liquide de densité de masse m où
m > m′. Le récipient se déplace par rapport au
sol avec une accélération constante a. Le
liquide est au repos par rapport au récipient.

a

m

Théorème du centre de masse : sans frottement∑
f ext − ∇ p = ma (13.65)

Densité de force extérieure : densité de poids dans le liquide∑
f ext = m g (13.117)

Gradient de pression : (13.117) dans (13.65)

∇ p = m (g − a) (13.118)
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13.4.1 Force d’Archimède

Force d’Archimède : résultante des forces de
pression exercée par le liquide sur la surface S
du flotteur.

FA =

∫
S

p (− dA) (13.119)

où dA est orienté du flotteur vers le liquide.

a

m

Théorème du gradient : champ scalaire pression p

FA = −
∫
S

p dA = −
∫
V

∇ p dV (13.120)

où V est le volume du flotteur.

Gradient de pression :

∇ p = m (g − a) (13.118)

Force d’Archimède : (13.118) dans (13.120) masse homogène m

FA = −m (g − a)

∫
V

dV (13.121)
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13.4.1 Force d’Archimède

Force d’Archimède : (13.121) remise en forme

FA = −mV (g − a) (13.122)

Dans un fluide accéléré, i.e. a ̸= 0, la force d’Archimède n’est pas
verticale : elle est oblique.

Principe d’Archimède : cas particulier : a = 0

FA = −mV g (principe d’Archimède) (13.123)

Dans un fluide au repos, i.e. a = 0, la force d’Archimède est verticale et
orientée vers le haut, et sa norme est égale au poids du fluide déplacé.

Accéléromètre : on construit un accéléromètre en attachant un flotteur
de densité de masse m′ à un fil qui est retenu au fond d’un récipient
complètement rempli de liquide de densité de masse m. Le récipient se
déplace par rapport au sol avec une accélération constante a. Le liquide
et le flotteur sont au repos par rapport au récipient.
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13.4.1 Expérience - Force d’Archimède

1 Un cylindre d’aluminium d’un litre est suspendu à une balance. La
balance indique une masse de 2.8 kg.

2 En immergeant le cylindre dans l’eau, la masse apparente indiquée par la
balance est 1.8 kg. La différence d’1 kg correspond à la masse d’un litre
d’eau déplacée, c’est-à-dire la norme de la force d’Archimède divisée par
la norme du champ gravitationnel.

3 En mettant alors le récipient dans lequel on a recueilli l’eau déplacée
entre la balance et le cylindre d’aluminium, la masse indiquée par la
balance est à nouveau de 2.8 kg.
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13.4.1 Expérience - Ludion

1 Un cylindre ou une bouteille remplie d’eau renferme une figurine ou une
éprouvette creuse contenant une poche d’air. Initialement, la masse
volumique de la figurine ou de l’éprouvette est inférieure à celle de l’eau.
La force d’Archimède exercée par l’eau est inférieure à son poids, elle se
trouve donc au sommet du cylindre ou de la bouteille.

2 En appuyant sur le bouchon de la colonne ou en comprimant la bouteille,
on comprime la poche d’air et on fait ainsi entrer plus d’eau dans la
figurine ou dans l’éprouvette. Sa masse volumique devient alors
supérieure à celle de l’eau. Ainsi, son poids surpasse la force d’Archimède
et elle coule.
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13.4.2 Accéléromètre

Objet : flotteur homogène de masse M ′

Forces extérieures :

1 Poids : M ′g

2 Tension : T

3 Force d’Archimède : FA

a

T

am
m‘

FA

g

x

ŷ

^

Théorème du centre de masse : flotteur

M ′g + FA + T = M ′a (13.124)

Masse : flotteur homogène de densité m′

M ′ = m′V (13.125)

Force d’Archimède :

FA = −mV (g − a) (13.126)

Tension : dans le fil (13.124) où m′ < m

T = −M ′ (g − a)− FA = (m− m′)V (g − a) (13.127)
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13.4.2 Accéléromètre

Tension : dans le fil

T = (m− m′)V (g − a) (13.127)

Grandeurs vectorielles : (13.128)

1 Tension : T = Tx x̂+ Ty ŷ

2 Accélération : a = a x̂

3 Champ gravitationnel : g = − g ŷ

a

T

am
m‘

FA

g

x

ŷ

^

Tension : composantes

Tx = − (m− m′)V a

Ty = − (m− m′)V g
(13.129)

Angle d’inclinaison du fil :

tanα =
Tx

Ty
=

a

g
ainsi α = arctan

(
a

g

)
(13.130)

Le flotteur s’incline vers la droite si a > 0 et vers la gauche si a < 0.
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13.4.2 Expérience - Accéléromètre

1 Un ballon rempli d’hélium, fixé au bout d’un fil, est attaché au sol d’un
chariot. En accélérant le chariot vers la droite, il subit une force
d’Archimède orientée obliquement vers la droite le long du fil. En freinant
le chariot, il s’incline vers la gauche, car son accélération devient
négative. En faisant tourner uniformément le chariot autour d’un axe fixe,
la force d’Archimède est orientée obliquement vers l’intérieur du virage en
raison de l’accélération centripète. L’angle d’inclinaison du fil permet de
déterminer l’accélération du chariot.

2 Une balle en plastique est attachée par un fil au fond d’un récipient
rempli d’eau. Lorsqu’on accélère le récipient, elle subit une force
d’Archimède orientée le long du fil dans le sens du déplacement.
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